Input/Output¶
Reading the raw data¶
-
ninolearn.IO.read_raw.hca_mon()[source]¶ heat content anomaly, seasonal variable to the first day of the middle season and upsample the data
-
ninolearn.IO.read_raw.nino_anom(index='3.4', period='S', detrend=False)[source]¶ read various Nino indeces from the raw directory
-
ninolearn.IO.read_raw.sat(mean='monthly')[source]¶ Get the surface air temperature from NCEP/NCAR Reanalysis
- Parameters
mean – Choose between daily and monthly mean fields
-
ninolearn.IO.read_raw.ssh()[source]¶ Get sea surface height. And change some attirbutes and coordinate names
-
ninolearn.IO.read_raw.sst_ERSSTv5()[source]¶ get the sea surface temperature from the ERSST-v5 data set
Reading the processed data¶
-
class
ninolearn.IO.read_processed.data_reader(startdate='1980-01', enddate='2018-12', lon_min=120, lon_max=280, lat_min=-30, lat_max=30)[source]¶